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1 Introduction

This report presents the results and conclusions from a set of research objectives posed by the Helios project. The
objectives included

e The study of all-optical LAN architectures and protocols

e The establishment of a testbed for the purpose of demonstrating high-bandwidth applications and collecting and
analyzing statistical profiles of their traffic

e The study of propagation of analog signals through all-optical networks

MCNC-RDI was the prime contractor on this project, with Lucent Bell Labs, North Carolina State University (NCSU)
and University of North Carolina at Chapel Hill (UNC CH) serving as sub-contractors.

This document consists of a number of sections each dedicated to a specific part of the Helios project. For con-
venience, this report references external documents, which are submitted with it. The breakdown of research areas
between the participants of the project was as follows:

MCNC RDI: prime contractor. Study and implementation of an all-optical broadcast LAN protocol named HiPeR-1.
It included the design and specification of the protocol and implementation of the protocol and the associated
unicast scheduler in an emulated environment.

NCSU: subcontractor. Study of multicast and Quality of Service (QoS) extensions to the HiPeR-1 scheduler.

UNC CH: subcontractor. Establishment and testing of a high-performance/high bandwidth demand multimedia
testbed

University of Pennsylvania: subcontractor. Establishment and testing of a high-performance/high bandwidth de-
mand multimedia testbed

Lucent Bell Labs: subcontractor. Study of the effects of propagation of analog RF signals over all-optical networks
as well as necessary adaptation layers

The report is structured as follows:

Sections 2, 3 and 4 describe MCNC-RDI’s work on the HiPeR-1 protocol and scheduler for broadcast WDM
LAN architectures. Section 5 describes the Application testbed established between MCNC-RDI, NCSU and UNC-
CH using NCNI infrastructure for the purpose of accumulating statistical information about traffic demands of high-
bandwidth applications. Section 6 describes the application cluster established withing MCNC-RDI in order for the
purpose of testing high-bandwidth/high-compute demand applications.

The Appendices present some of the technical details related to the HiPeR-1 scheduling protocol developed and
implemented by MCNC-RDI.
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Figure 1: A Helios network with 8 nodes connected to the Passive Star Coupler

2 dWDM Broadcast and Select MAC

2.1 Overview of Helios Protocol

This chapter describes the details of the design of the HiPeR-1 protocol as implemented in the Helios project. A
Helios/HiPeR-1 network can consist of a (potentially large) number of end hosts (referred to as nodes), which are con-
nected to a Passive Star Coupler (PSC), a passive all-optical device that allows us to create a broadcast environment
in the network without employing expensive electro-optical interfaces. Communication between nodes will occur
on multiple wavelengths; thus the Helios network is a type of single-hop WDM network. Each Helios node will be
equipped with an optical NIC to facilitate control communication between the nodes in the network. All communica-
tion will be done using either IPv4 or IPv6 protocol. The number of wavelengths utilized by the HiPeR-1 protocol is
assumed to be smaller than the number of nodes in the network.

Communication in a Helios network is collision-free due to the use of a non-preemptive gated scheduling protocol.
A scheduling node calculates and disseminates the schedule. There are two types of nodes in a Helios network:
candidate nodes, which are eligible to serve as the scheduling node, and slave nodes, which are not. We make this
distinction because we can envision a network composed of servers and workstations, where the workstations may lack
the necessary computing resources to perform the scheduling node’s duties. Furthermore, workstations may allow low
priority access, making them vulnerable to security attacks that could disrupt the network.

The Helios network utilizes a Fast Tunable Transmitter - Slowly Tunable Receiver (FTT-STR) approach; for packet
transmission and scheduling purposes the lasers are tunable and the receivers are fixed. However, the receivers can be
retuned occasionally in order to balance the load in the network. Helios differs from all other WDM networks currently
under development in several respects: it operates within a broadcast-and-select environment, it is collision-free, and
it is packet-switched instead of circuit-switched.

2.2 Constants and Parameters

Refer to the Appendices for a complete list of important constants and parameters. Figure 2 gives the values for the
most common parameters. Those without a formula are constants, while the rest can be calculated from the constants.

2.3 High Level Node Design

Figure 3 depicts the high-level design of a Helios network adapter, highlighting the various hardware, software and
firmware modules and their interactions. On the transmit side, data packets are received by the driver and forwarded
to the transmit path of the adapter. On the receive side, frames received by the optical module are differentiated into

2



Name

N

C

c

Lmax

Cf
MAX_PSCO
ND

tick

LS

pkt

slot

TL

schedchunk

min{S+S}
mem

glb{Smax_true}

Smin

Smax

Value

200

10
300000
250
200000
1.25
2.500
12

1

600

4.8

1125

50
32
256

30
144

42667
204.8

Units

km/s

m

km/s
microsec
microsec
ns

Gb/s
octets

microsec

microsec
octets

slots

octets

octets
MB

ms

slots

microsec

slots

ms

Formula

2c/3
Lmax/Cf
2(Lmax)x1076 / (Cf x 103)

8(pkt)x10%6 / (LSx10%9)

(TLx107-6)(LSx10°9) / 8

ceil(TL/slot)

1 octet for lambda + 2 octets for

T start + 2 octets for T_last_slot

C*schedchunk

8(mem) /LS

C( ceil(TL/pkt) + ceil(min{S+S}/pkt) )

ceil(.8 * glb{Smax_true} x 1073 / slot)
.8 * glb{Smax_true}

Figure 2: Benchmark parameter values

Definition

Number of nodes in network
Number of wavelengths in network
Speed of light in a vacuum

Max length of fiber span in network
Speed of light in fiber

Maximum PSC offset

Network Diameter

Clock tick

Line speed

Packet size

Slot length

Tuning latency between 2 lambdas

Single node-lambda schedule length

Min length of SYNC+SCHED frame
Total node memory for packet queues

GLB on True Max Superframe Length

Min superframe length

Max superframe length (80%)
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Figure 3: A high-level hardware view of the Helios NIC hardware

signaling and data packets and forwarded either to the signaling module or to the driver for processing. The following
sections describe in more detail the functionality of each module.

2.3.1 In Software: the Driver

The Driver module consists of two sub-modules. The Signaling Controller coordinates the operation of all other
software and hardware modules. The Scheduling Algorithm calculates new schedules based on queue occupancies
provided by all the nodes in the network; it is called relatively infrequently, either in response to changes in the traffic
pattern or simply periodically.

2.3.2 In Hardware: the Adapter

The Signaling module of the adapter contains four sub-modules that govern the necessary signaling actions: Schedule
Management forms and processes frames related to scheduling, Synchronization enables all communication to occur
in hard real time, Join contains the procedure for a node to join a Helios network, and Election is invoked when a
master node fails and all candidate nodes take part in the election of a new one. Section 2.5 describes the signaling
protocol in detail.

The ARP and A-ARP tables enable a Helios node to perform IP-to-MAC address resolution and MAC-to-receive-
wavelength resolution, respectively. The master node keeps track of the ARP and A-ARP mappings and distributes
them via ARP frames to all other nodes. Outgoing IP packets are buffered in the Wavelength Queues on a per-
wavelength basis prior to transmission. The Queue Manager serves the wavelength queues and controls which frames
are transmitted.

2.4 Frames and Superframes
2.4.1 A Superframe: The Implementation of a Schedule

The time required to complete the transmissions of one full schedule in HiPeR-1 is referred to as a superframe. A
superframe further consists of frames, which are continuous sequences of octets transmitted by nodes on individual
wavelengths. Helios uses non-preemptive schedules; in other words, within each superframe a node transmits on a
particular wavelength at most once.
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Figure 4: Superframe for a network with N=7, C=4; A3 is the receive wavelength for the master node N1.

| Frame | Function | Frame Type |
DATA Carries regular data 0x01
MDATA Carries multicast data 0x02
™ Measures roundtrip delay to the PSC 0x03
OCC Transmits queue occupancies to the scheduling node 0x04
JOINOCC Identical to OCC except for the join_flag in the header 0x05
SYNCSCHED | Carries scheduling information to the nodes 0x06
ARP Carries MAC address to wavelength index mapping (AARP) 0x07
OAM Carries error and management information about network state 0x08
AVAIL[1,2] Announces the availability of a scheduling server to become 0x09

a scheduling node during scheduler election process

Table 1: Frame types and functions

The master node calculates the schedule based on other nodes’ packet queue occupancies, which it learns through
the OCC frames sent by other nodes during routine network operation. Once calculated, the schedule is then broadcast
on each wavelength inside the SYNCSCHED frame, which the master node transmits on every wavelength every
superframe. A schedule contains windows, or intervals of time, during which a particular node may transmit a frame.

Figure 4 shows the position of various frames within a superframe. In this example, N1 is the master node and its
receive wavelength is A3. There is a JOINOCC window on A3 (with a JOINOCC frame in it), and there is an attached
TM window at the end of the superframe. Two nodes are in different stages of joining the network: N6 is sending a
JOINOCC frame containing its queue occupancy information to the master node so that it can be included in the next
schedule. Meanwhile, N7 is performing Time Measurement; its TM frame can be seen inside the TM window. Time
measurement is the first operation a new node must perform when joining the network, in order to synchronize frame
reception and transmission. The complete list of the types of frames that may be transmitted during a superframe are
shown in Table 1. In the following section each frame type is discussed in detail.

2.4.2 Frame Format

Each frame consists of a header, a variable length payload, and a trailer. Frame structure is illustrated in Figure 5, and
each field is described in Table 2. The header contains the Frame Type indicator, one octet of flags, the payload length
indicator, and the source and destination addresses. The trailer contains a timestamp and a CRC32 checksum field.
The last column of Table 1 shows the possible values that can be placed in the frame type field of the Helios frame
header.

Table 2 also shows the length of each field in a Helios frame. The payload length field is allocated two octets for

5



frame_type | flags payload _length source_ID destination_ID payload sttlz';r?p crc32

Figure 5: Structure of a frame in the Helios network.

Field Name | Description | Field Length (in octets) |
frame_type Frame type indicator 1
flags Frame flags 1
payload_length | Indicates the length of the frame payload 2
source_ID MAC address of the originator of the frame 16
destination_ID | MAC address of the destination of the frame 16
payload contains frame payload variable < 556
time_out Time stamp which marks the departure time of the frame 4
crc32 CRC32 checksum of the entire frame 4
Total 600

Table 2: Field lengths in Helios frames

future expansion, when it will be possible to use packets longer than 600 octets (the current maximum transfer unit).
The flags field contains a number of flags, shown in Table 3, that are used by the nodes to indicate the state of the
protocol.

2.4.2.1 Frame Addressing The Helios addressing scheme is compatible with both IPv4 and IPv6 address formats
to allow direct mapping of addresses from those protocols into the Helios MAC addresses. IPv6 addresses can be
mapped directly onto the Helios MAC addresses and used as a replacement for MAC addresses. IPv4 addresses will
require padding as described in Section 2.5.4 of RFC2373. In short, an IPv4 address will be represented as eighty 0’s,
followed by sixteen 1’s, followed by the IPv4 address of the node interface.

Similarly, multicast addresses can be used as destination MAC addresses for multicast communications in Helios.
Helios will utilize the link-local multicast addresses reserved in IPv4 and IPv6. For the all-nodes multicast group used
internally for sending signaling messages, Helios will utilized the following values:

IPv4: 224.0.0.250

IPvo6: ff02:1

2.4.2.2 DATA Frame The DATA frame payload contains an IPv4 or IPv6 packet. Use of the timestamp field is
optional.

2.4.2.3 MDATA Frame The MDATA frame payload contains an IPv4 or IPv6 multicast packet. Use of the times-
tamp field is optional.

| Flag Name |Purpose |

more_frames | Indicates that more frames of the same type will follow this frame
(Used only by SYNCSCHED and ARP frames)

join_flag Indicates that this frame is a JOINOCC frame

(Used only by OCC frames)

Table 3: Flags in the Helios frame header



flags | sf_length | switch_count | T_ss [ T_jo | time_till_tm master_node_ID cur_sched_lambda | num_schedules %Sa‘éules
Individual Node Individual Node
node_ID num_schedchunks Schedchunks node_ID num_schedchunks Schedchunks
[
wave_num T_start T_last_slot wave_num T_start T_last_slot

Figure 6: SYNCSCHED Frame payload

2.4.2.4 SYNCSCHED Frame The SYNCSCHED frame is sent to the all-nodes link-local multicast address (see
2.4.2.1). It carries node-specific scheduling information (shown in Figure 6) from the scheduling node to all nodes.
SYNCSCHED frames transmitted on a particular wavelength A; will only contain node schedules for those nodes
listening to A;. Upon receipt of a SYNCSCHED frame, each node stores its own schedule until the time comes to start
using the new schedule. Special flags in the header indicate the transition phase from one schedule to the next.

In a network with a large number of nodes, the schedules for all the nodes listening on a particular wavelength
may not fit into a single SYNCSCHED frame. In this case multiple consecutive instances of the SYNCSCHED frame
are scheduled and transmitted on that wavelength. A node’s schedule is never fragmented across frames; if a node’s
complete schedule cannot fit into the remainder of a SYNCSCHED frame, it is transmitted in the next one. These
multiple instances of the SYNCSCHED frame are transmitted in sequence and non-preemptively. To indicate that
more frames of the same type follow, the more_frames flag in the header is set in all consecutive frames except the
last one.

Each SYNCSCHED frame consists of the Helios header, the SYNCSCHED payload, and the trailer. As shown in
Figure 6, the payload itself consists of a header and the attached node schedules. Table 4 describes each field in the
SYNCSCHED frame payload. The flags field of the SYNCSCHED frame contains several single-bit flags, which are
described in Table 5.

2.4.2.5 ARP Frame The scheduling node transmits ARP frames on every wavelength in order to disseminate the
MAC address, IP address, and wavelength ID for all nodes in the network. Each ARP frame carries an integral number
of such mappings. If all available mappings do not fit into a single ARP frame, the scheduling node may schedule
and transmit a number of ARP frames. Like multiple SYNCSCHED frames sent on one wavelength, the multiple
ARP frames are transmitted in sequence and non-preemptively, and the more_frames flag in the header is set in all
consecutive frames except the last one. But the transmission of ARP frames differs from that of SYNCSCHED frames
in an important way: whereas the SYNCSCHED frames sent on one wavelength differ from the SYNCSCHED frames
sent on another wavelength, the same ARP frames are transmitted on every wavelength.

Each ARP frame consists of the Helios header, the ARP payload, and the trailer. The structure of the ARP payload
is shown in Figure 7. Table 6 contains a description and the field length for each field in the ARP frame payload.

2.4.2.6 TM Frame A TM window is a quiet time provided on each wavelength at the end of a schedule in order to
allow new nodes to measure their delay to the PSC, called the psc_offset. A new node transmits a timestamped TM
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Field Name | Description | Field Length (in octets) |
flags Current state of the schedule and protocol 1
sf_length Length of the superframe/schedule in slots 2
switch_count Countdown to the new schedule (in conjunction with active_bit) 1
T_ss Offset (in slots, from the start of the superframe) of this SYNCSCHED frame 2
time_till tm Time (in slots) from the SYNCSCHED frame to the TM window 2
(If the flags show the presence of a TM window in this superframe)
T_jo Offset (in slots, from the start of the superframe) of the JOINOCC window 2
master_node_ID Scheduling node’s MAC address 16
cur_sched_lambda | Scheduling node’s listening wavelength 1
num_schedules Number of individual node schedules in this frame 1
node_1ID Address of the node for which the following schedule is intended 16
num_schedchunks | Number of schedchunks in the node’s schedule 1
wave_num ID of the wavelength for this schedchunk 1
T_start Offset (in slots, from the start of the superframe) of the first slot 2
in which the node may transmit on this wavelength
T_last_slot Offset (in slots, from the start of the superframe) of the last slot 2
in which the node may transmit on this wavelength

Table 4: SYNCSCHED frame payload fields

| Flag name |Purpose

tm_bit

Indicates the presence (1) or absence (0) of a TM window in this superframe

active_bit

Indicates whether the information in this SYNCSCHED is for current (1) or future (0) use

Table 5: SYNCSCHED frame flags

num_entries

ARP Entries

|

node_ID

node_IP lambda node_ID node_|IP lambda

Figure 7: ARP frame payload

| Field Name [ Description

| Field Length (in octets) |

num_entries | Indicates the number of ARP entries in this frame 1
node_ID Contains the MAC address of the node in the mapping 16
node_IP Contains the IP address of the node in the mapping 16

lambda Contains the wavelength number in the mapping 1

Table 6: ARP frame payload fields




node_IP rcv_lambda queue occupancies

lambda queue_size lambda queue_size lambda queue_size lambda queue_size

Figure 8: OCC frame payload

Field Name | Description Field Length (in octets) |
node_IP IP address of the source node 16
rcv_lambda | Receive wavelength number of the source node 1
lambda Wavelength number for the queue 1
queue_size | Queue size of the associated wavelength 2

Table 7: OCC frame payload fields

frame to itself during the TM window; the difference between the timestamp and the receipt time of the TM frame is
the roundtrip delay to the PSC. The psc_offset is one-half the roundtrip time.
A TM frame consists of the Helios header, an empty payload, and the trailer.

2.4.2.7 OCC Frame Each node in the network informs the scheduling node of its packet queue occupancies by
transmitting an OCC frame. Using this aggregate information, the scheduling node can produce a new schedule that
better accomodates nodes’ current load demands. The scheduling node must always reserve enough time on its receive
wavelength for each node in the network to send its OCC frame.

An OCC frame consists of the Helios header, the OCC payload, and the trailer. The structure of the OCC payload
is shown in Figure 8. Table 7 describes the fields of the OCC frame payload in detail.

2.4.2.8 JOINOCC Frame When anew node joins the Helios network, it sends a JOINOCC frame to the scheduler
to indicate its presence. A JOINOCC frame is simply an OCC frame with the join_flag set in the Helios frame
header. The main difference between the two frames is the time at which they are transmitted. A node in the Helios
network routinely transmits an OCC frame during its allocated time on the scheduling node’s receive wavelength.
However, a new node that is not yet a part of the Helios network transmits a JOINOCC frame on the scheduling node’s
receive wavelength during the JOINOCC window in the schedule, given by the T_jo field of the SYNCSCHED frame.

2.4.2.9 AVAIL Frames A candidate node participating in scheduler election (Section 2.5.4) uses AVAIL[1,2]
frames to indicate it is available to become the master node in the network. The frames consist of a standard He-
lios header, an empty payload, and a trailer. Use of the timestamp field is optional.

2.4.2.10 OAM Frame OAM frames are similar in spirit to OAM ATM cells. They carry additional management
information between the nodes. The format and exact function of this frame type remains presently undefined.

2.5 Helios Network Operation

The operation of a node in the Helios network can be divided into six modes, as shown in Table 8. Corresponding
to each mode of operation are two hardware state machines, the receive and the transmit hardware state machines.



Hardware State Machines
Mode Function Transmit | Receive
Time a new node measures its propagation delay to <tm> >tm<
Measurement | the PSC
Join a new node contacts the master node with its <join> >join<
bandwidth requests
Election a candidate node vies to become the master node <elect> >elect<
Routine a node transmits according to the schedule <routine> >routine<
Scheduling | same as Routine, plus creates new schedules <scheduling> | >scheduling<
ERR error detection, reporting, and recovery

Table 8: The modes of operation for a Helios node

Each machine begins and ends in the idle state: they are triggered out of the idle state by a signal from the software
state machine called signaling controller, and they usually terminate by sending a signal back to signa-
ling controller and returning to the idle state. Figure 9 collects most of the variables and parameters used in
the hardware state machines and shows their logical locations in memory.

Following a brief overview of the different modes of operation in Section 2.5.1, we cover the important issue of
timing in Section 2.5.2. Next we describe the signaling_controller in Section 2.5.3, and finally we discuss
each mode in detail in Sections 2.5.4 through 2.5.9.

2.5.1 Helios Modes of Operation

When the network comes up after having been completely powered down, no master node has yet been designated, no
frames are traveling, and no synchronization information is available. The first task during this initialization phase is
the election of a master node; candidate nodes enter Election Mode while slave nodes sleep. The operation of Election
Mode assumes that candidate nodes are equipped with slowly tunable receivers; otherwise, a network administrator
must designate the master node.

Once a master node has been elected, it circulates the scheduling and synchronization information in SYNC-
SCHED frames, enabling other nodes to join the network. A node formally joins the Helios network by proceeding
through the Time Measurement and Join modes. In Time Measurement, a node calculates its psc_offset, the prop-
agation delay to the PSC. All times are measured locally, and the transmissions are done in relation to the PSC time.
Since collisions can occur only at the PSC, each node uses its psc_offset to ensure that its transmissions reach the
PSC at the exact time prescribed by the schedule.

Following Time Measurement a node enters Join Mode. The node first lets the master node know of its traffic
demands via the JOINOCC frame, so that the current schedule can be expanded to include this new demand. The
joining node must then wait to hear a new schedule that includes its request.

It is possible for a collision to occur when two or more nodes attempt to join a Helios network at the same time.
Two nodes assigned to the same listening wavelength could experience a collision during Time Measurement, or two
nodes may transmit a JOINOCC frame to the master node during the same JOINOCC window. In either case, the
collision does not interfere with the normal operation of the rest of the network; a collision during the transmission
of a TM frame (respectively, a JOINOCC frame) is isolated to the TM window (respectively, the JOINOCC window).
The protocol includes backoff algorithms to resolve such contention.

After successfully joining the network, a new node enters Routine Mode, where it remains indefinitely unless an
error condition occurs. During Routine Mode, the receive hardware extracts the schedule from the arriving SYNC-
SCHED frames and forwards incoming data frames to the driver. Meanwhile, the transmit hardware transmits control
frames and data frames from its wavelength queues onto the appropriate outgoing wavelengths, according to the current
schedule. These transmissions include sending an OCC frame to the master node, once per superframe, to communi-
cate its packet queue occupancies; from the OCC frames the master node can calculate a schedule. In contrast to the
Time Measurement and Join modes, Routine Mode is collision-free. The psc_offset, first measured during Time
Measurement, is also measured periodically during Routine Mode, in a collision-free manner.
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Figure 9. Logical representation of memory
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2.5.2 Time Synchronization

Time synchronization is necessary so that nodes can transmit data onto wavelengths according to a pre-established
schedule, preventing collisions. Since collisions can only occur at the PSC, the PSC naturally lends itself to being
a common point of reference. In order for a node’s transmission to arrive at the PSC at the time prescribed by the
schedule, a node must know how long its signal needs to travel to the PSC (its psc_offset). Each node calculates its
psc_offset through Time Measurement (Section 2.5.5). The schedule disseminated by the master node lists the offset
times that a node can transmit on the different wavelengths; each offset time is the relative time since the start of the
superframe. Therefore, to use the schedule, a node must learn when the superframe will start at the PSC. This task is
performed first during Join (Section 2.5.6) and again during each superframe as a part of Routine Mode (Section 2.5.7).
In addition to the psc_offset, three other quantities are needed to calculate the start time of the superframe at the
PSC; for a node with its receiver tuned to A;, these quantities are:

1. T_ss : the offset time that the SYNCSCHED frame is scheduled to appear on A; within the superframe. The
node copies the value from {ss.T_ss} (a field in the SYNCSCHED frame) into the local variable T_ss.

2. sf_length(cur_bank) : thelength of the superframe in slots. The node copies the value from {ss.sf_length}
(a field in the SYNCSCHED frame) into the local variable sf_length (cur_bank) associated with the current
schedule bank, cur_bank.

3. r_ss: the receive timestamp of the SYNCSCHED frame at the node (according to the node’s clock). The node
copies the current time from its own clock into the local variable r_ss at the instant the SYNCSCHED frame
arrives.

Using these three quantities and the psc_offset, the beginning of the next superframe at the PSC, called psc_sf_-
start_next, is:
psc_sf_start_next =r_ss—T_ss—psc_offset+sf_length

The quantity psc_sf_start_next is updated during Routine Mode by the receive hardware (>routine< for
slaves and candidates; >scheduling< for the master node). When the transmit hardware reaches the end of the
schedule and is ready to start transmissions in the next superframe, it copies the value held in psc_sf_start_next
into psc_sf_start. This mechanism prevents the current value from being overwritten when the start time for the
next superframe is calculated.

2.5.2.1 Transmitting frames on time We now show how this calculation will aid in the transmission of data
frames according to the schedule. Suppose that the schedule lists the offset time (again, relative to the start of the
superframe) that node A can begin transmitting on A; to be T_i_start. That is, node A’s transmission must arrive at
the PSC at t_sf_start + T_i_start. In order for its transmission to reach the PSC at this time, node A must begin
transmitting at time psc_sf_start + T_i_start - psc_offset.

2.5.2.2 Network size and the need for pipelining Because of the relatively small dimensions of the Helios net-
work we need not worry about the SYNCSCHED frame arriving too late to be used for the next superframe’s transmis-
sion (recall that the reception of the current superframe and the transmission of the next superframe overlap in time).
Consider the following example:

Let the link speed for a single wavelength be 1 Gbps and network radius be 250 m. Assuming the speed of light
in fiber is approximately 200,000 km/s, the amount of data stored in one radius of a maximum-sized network will
be on the order of 1000 bits, which is smaller than a single slot (see constants). This figure must be doubled since
the maximum psc_offset is equal to the network radius. Therefore a node must begin the transmissions of the next
superframe within one slot’s time of the end of the current superframe. As long as the SYNCSCHED frame never
appears as the last frame on a given wavelength, the node will have enough time to calculate the start of the next
superframe.

In the future, when the network dimensions and speed increase, we can use pipelining to get around this "simul-
taneity" problem.
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Figure 10: Software state machine signaling_controller
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2.5.3 The Signaling Controller

The state machine signaling_controller is shown in Figure 10. There are six main states in signa-
ling_controller, corresponding to the six modes of operation: Time Measurement, Scheduler Election, Join,
Routine, Scheduling, and ERR. In addition, there are five minor states: two are related to Time Measurement (Wait On
Election and TM Backoff), while the other three are related to Join (Wait On Election, Join Backoff, and Same Node
Sleep). We now describe each state in turn.

2.5.3.1 Time Measurement State The signaling controller is awaiting a signal from the hardware state
machine >tm<. A successful signal is:

e ROUNDTRIP_TIME from >tm<.

Event: >tm< has obtained the needed data (tm_in an tm_out) so that signaling controller can cal-
culate the psc_offset.

Transition: Move to the Join state and start >join<.
Unsuccessful signals are:
e NO_TM_WINDOW from >tm<.

Event: None of the SYNCSCHED frames that >tm< encountered (out of NO_TM_MAX SYNCSCHED
frames) indicated that a tm window was present in the superframe.

Transition: If this failure has occurred less than GET_TM_MAX times, restart >tm< (i.e., self-transition);
else, move to ERR state.

e NO_SCHED from >tm<.

Event: >tm< failed to hear a SYNCSCHED within T_GET_SCHED.

Transition: If a candidate node, move to Scheduler Election state; else, if this failure has occurred less than
WAIT_MAX times, move to Wait On Election state; else, move to ERR state.

e NO_REPLY from >tm<.

Event: >tm< failed to hear the echo of its tm frame.

Transition: If this failure has occurred less than TM_MAX times, move to TM Backoff state; else, move to
ERR state.

2.5.3.2 Scheduler Election State The signaling controller is awaiting a signal from the hardware state
machine >elect< or <elect>. A successful signal is:

e SCHEDULER from <elect>.

Event: <elect> has just transmitted the second AVAIL frame, winning the election.

Transition: Move to the Scheduling state and start >scheduling<.
An unsuccessful signal is:
e NOT_SCHEDULER from >elect<.

Event: >elect< heard something (a SYNCSCHED or an AVAIL frame) which caused it to lose the election.

Transition: Move to Time Measurement state and start >tm<.
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2.5.3.3 JoinState The signaling_controllerisawaiting a signal from the hardware state machine >join<.
A successful signal is:

e NEW_SCHED from >join<.

Event: >join< has received a SYNCSCHED frame that contains its own my_node_ID.

Transition: Move to Routine state and start <routine> and >routine<.
Unsuccessful signals are:
e NO_SCHED from >join<.

Event: >join< failed to hear a SYNCSCHED within T_GET_SCHED.
Transition: If a candidate node, move to Scheduler Election state; else, if this failure has occurred less than
WAIT MAX times, move to Wait On Election state; else, move to ERR state.
e NO_NEW_SCHED from >join<.

Event: >join< failed to hear a SYNCSCHED that included scheduling information for my_node_ID.
Transition: If this failure has occurred less than JOIN_MAX times, move to Join Backoff state; else, move to
ERR state.
e SAME_ID from >join<.

Event: >join< heard a SYNCSCHED that included scheduling information for my_node_ID.
Transition: If this failure has occurred less than SAME_MAX times, move to Same Node Sleep state; else,
move to ERR state.
e NO_ACTIVE_SCHED from >join<.

Event: None of the SYNCSCHED frames that >join< encountered (out of INACTIVE_MAX SYNCSCHED
frames) had the active_bit set.

Transition: Move to ERR state.

2.5.3.4 Routine State The signaling_controller could remain in this state indefinitely, while <rout ine>
transmits according to the schedule and >routine< receives incoming data and signaling frames. Only an unsuc-
cessful signal (triggered by an error condition in either <routine> or >routine<) will cause a transition out of
the Routine state. Possible unsuccessful signals are:

e BANKS_INVALID from <routine>.

Event: <routine> was just started, but was unable to transmit anything at all, because BANKO was invalid.
Transition: Move to ERR state.

e UNEXP_INVALID_BANK from <routine>.

Event: <routine> completed transmissions for the current schedule (held in cur_bank) and discovered that
cur_bank had been marked invalid.

Transition: Move to ERR state.
e NO_VALID_SCHED from <routine>.

Event: <routine> was ready to switch from an out-of-date schedule to a new one, but discovered that the
reserve memory bank was marked invalid.

Transition: Move to ERR state.
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e NO_SCHED from >routine<.

Event: >routinex< failed to hear a SYNCSCHED within T_GET_SCHED.
Transition: Move to ERR state.

e NOT_IN_SCHED from >routine<.

Event: >routine< heard a SYNCSCHED that failed to include scheduling information for my_node_ID.
Transition: Move to ERR state.

2.5.3.5 Scheduling State The signaling controller could remain in this state indefinitely, while
<scheduling> transmits according to the schedule and >scheduling< receives incoming data and signaling
frames. Only an unsuccessful signal (triggered by an error condition in either <scheduling> or >scheduling<)
will cause a transition out of the Scheduling state. Possible unsuccessful signals, listed below, are identical to
those listed for Routine State in Section 2.5.3.4, except that they come from the state machines <scheduling>
or >scheduling<.

e BANKS_INVALID from <scheduling>.

Event: <scheduling> was just started, but was unable to transmit anything at all, because BANKO was
invalid.

Transition: Move to ERR state.
e UNEXP_INVALID_BANK from <scheduling>.

Event: <scheduling> completed transmissions for the current schedule (held in cur_bank) and discovered
that cur_bank had been marked invalid.

Transition: Move to ERR state.
e NO_VALID_SCHED from <scheduling>.

Event: <scheduling> was ready to switch from an out-of-date schedule to a new one, but discovered that
the reserve memory bank was marked invalid.

Transition: Move to ERR state.
e NO_SCHED from >scheduling<.

Event: >scheduling< failed to hear a SYNCSCHED within T_GET_SCHED.
Transition: Move to ERR state.

e NOT_IN_SCHED from >scheduling<.
Event: >scheduling<hearda SYNCSCHED that failed to include scheduling information for my_node_1ID.

Transition: Move to ERR state.

2.5.3.6 ERR State ERR is a terminal, absorbing state; an error message is printed to the screen and then the
signaling_controller halts.

2.5.3.7 TM Wait On Election State The signaling_controller arrives at this state from the Time Mea-
surement state because no schedules are heard and the node is a slave (i.e., cannot participate in scheduler election).
The signaling controller remains here for a time T_ELECTION_WAIT. There is only one opportunity to
exit TM Wait On Election state:

Event: The wait_timer expires.

Transition: Move to the Time Measurement state.
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2.5.3.8 TM Backoff State The signaling_controller arrives at this state from the Time Measurement
state, because it did not hear the echo of its TM transmission, possibly due to a collision. The signaling_control-
ler remains here for a random amount of time (exponential backoff). There is only one opportunity to exit TM
Backoff state:

Event: The tm_backoff_timer expires.

Transition: Move to the Time Measurement state.

2.5.3.9 Join Wait On Election State The signaling_controller arrives at this state from the Join state
because no schedules are heard and the node is a slave (i.e., cannot participate in scheduler election). The signa-
ling_controller remains here for a time T_ELECTION_WAIT. There is only one opportunity to exit Join Wait
On Election state:

Event: The wait_timer expires.

Transition: Move to the Join state.

2.5.3.10 Join Backoff State The signaling controller arrives at this state from the Join state, because it
did not hear a SYNCSCHED frame containing scheduling information for my_node_ID. The signaling_control-
ler remains here for a random amount of time (exponential backoff). There is only one opportunity to exit Join
Backoff state:

Event: The join_backoff_timer expires.

Transition: Move to the Join state.

2.5.3.11 Same Node Sleep State The signaling_controller arrives at this state from the Join state, be-
cause before the node could join the network, a SYNCSCHED was heard containing scheduling information for
my_node_ID, possibly meaning that another node in the network possesses the same node ID. The signaling
controller remains here for a time T_SAME. There is only one opportunity to exit Same Node Sleep state:

Event: The same_timer expires.

Transition: Move to the Join state.

2.5.4 Election

Whenever a candidate node fails to detect the presence of a master node, i.e. no SYNCSCHED frames are heard within
a pre-determined amount of time, then the candidate node enters Election Mode. This situation can occur when the
network comes up after having been completely powered down, or when an operational master node suddenly fails.

Slave nodes, in the meantime, are capable neither of serving as a master node nor of participating in the election
of one. Therefore, whenever a slave node fails to detect the presence of a master node, it enters a sleep state for a short
time. Upon emerging, it listens for SYNCSCHED frames that indicate the presence of a master node, and if none is
heard, it sleeps again. A slave node may re-enter the sleep state a fixed number of times before giving up (and moving
to Error Mode).

Election Mode, as it is described below, assumes that candidate nodes are equipped with slowly tunable receivers.
If candidate nodes are only equipped with fixed receivers, then a network administrator must designate the master
node.
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Figure 11: Receiver hardware state machine for scheduler election: >elect<

[ RCVSGNL("SEND_AVAIL1", >elect<) |
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IDLE

[ RCVSGNL("SEND_AVAIL2", >elect<) ]
SND( {avail2}, LAMBDAO )
SNDSGNL("MASTER". sw)

Figure 12: Transmitter hardware state machine for scheduler election: <elect>
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2.5.4.1 Scheduler Election with Slowly Tunable Receivers Scheduler Election is illustrated in the receive and
transmit hardware state machines >elect< and <elect>. A software signal to >elect< begins Scheduler Elec-
tion, moving the state machine from IDLE to CHECKING state. The node listens on its original wavelength for a
SYNCSCHED frame, which would indicate the presence of a master node. If none is heard within a time T1, the
node moves to SILENT CONTENDER, tuning both its receiver and its transmitter to Ag. There, it listens for either
a SYNCSCHED frame, indicating the presence of a master node, or an AVAIL frame, indicating that another node is
in the ANNOUNCED-CONTENDER state; in either case, the node drops out of Scheduler Election and becomes a
non-scheduling node. As such, the node must wait to see SYNCSCHED frames generated by the newly elected master
node and then join the network by proceeding through Time Measurement and Join modes.

If neither a SYNCSCHED nor an AVAIL is heard within a time T2, the node transmits an AVAIL1 frame on Ag
and, after hearing its own transmission, becomes an ANNOUNCED-CONTENDER. Now it listens on A for a time
T3; so long as the node hears no AVAIL with a higher-valued MAC address ( ({avail.node_ID}) during the interval
T3, it will win the election and become the master node.

However, while in the ANNOUNCED-CONTENDER state, the node could hear an AVAIL with a higher-valued
MAC address. In this case, the node will take itself out of the election and become a non-scheduling node; the other
node with the higher MAC address has precedence in the scheduler election process.

If, on the other hand, our node detects a collision while in the ANNOUNCED-CONTENDER state, it enters the
BACKOFEF state for a random amount of time (T4). Other nodes involved in the collision will also enter the BACKOFF
state, each choosing a different T4. The node whose T4 expires first will try again to transmit AVAIL1. (If there’s a
tie, a collision occurs and the involved nodes return to the BACKOFF state.) Any successfully transmitted AVAIL will
cause the nodes waiting in BACKOFF to become non-scheduling nodes.

To prevent two or more nodes from mistakenly believing they have emerged victorious from Scheduler Election,
the time durations T2 and T3 must obey a particular relationship. Recall that ND is defined to be the longest one-way
propagation time between any two nodes. Then we have the following relationship:

2xND < T3 < T2

(First Inequality) If more than one node is an ANNOUNCED-CONTENDER, then this inequality ensures that the
node with the highest-valued MAC address will win. (in particular, it ensures that all nodes with lower-valued
MAC addresses will wait long enough in state ANNOUNCED-CONTENDER to hear the AVAIL from the node
with highest address.)

(Second Inequality) Suppose node B is busy retuning its receiver to Ag, transitioning from CHECKING to SILENT-
CONTENDER, and that the retuning is completed just after node A’s AVAIL1 has passed by. Then this
inequality will ensure that node B will hear node A’s AVAIL2 before node B becomes an ANNOUNCED-
CONTENDER itself.

2.5.4.2 Time Measurement within Scheduler Election When a node reaches the SILENT-CONTENDER state,
both its transmitter and receiver are tuned to Ag. When a node then transmits AVAIL1, it becomes an ANNOUNCED-
CONTENDER and sets the announced_timer for T3. Since the node should hear the echo of its own AVAIL1
transmission (provided its receiver is functional), it takes advantage of this opportunity to execute Time Measurement,
that is, to calculate its psc_offset. The longest amount of time a node would have to wait to hear the echo is ND. But
the announced_timer requires that the node remain in the ANNOUNCED-CONTENDER state for a time T3 before
becoming the master node. Therefore, the avail_echo_timer should be set for a time longer than ND but less than
T3. Since the inequality 2 * ND < T3 must hold (Section 2.5.4.1), then we could set the avail_echo_timer for 2 % ND.

If the AVAIL echo is heard, the avail_echo_timer is turned off. Otherwise, the avail_echo_timer will expire
before the announced_timer expires, causing the node to abort Scheduler Election and then move into the ERR
Mode. Bundling Time Measurement with Scheduler Election produces a master node that knows its psc_offset and
has a functioning transmitter and receiver.

2.5.5 Time Measurement

When a new node wishes to join a functioning Helios network, it must first synchronize its system time with that of
the network through a process called Time Measurement. Next, the node must execute the Join process, which lets
the master node know of its presence so that the current schedule can be expanded to include the new node’s traffic
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Figure 13: Receive hardware state machine for time measurement: >tm<

demands. Figure 13 and Figure 14show the receive and transmit hardware state machines for time measurement,
respectively.

To synchronize its system time, a node must calculate its psc_offset, the time needed for a transmission to reach
the PSC. The TM frame is the mechanism for achieving this goal. The master node from time to time (at least every
TM_FREQUENCY superframes) will place a TM window at the end of a superframe on all wavelengths. The master node
will then announce the presence of a TM window by setting a bit in the SYNCSCHED frame, {ss.tm_bit}. Further,
the SYNCSCHED frame includes the duration of time until the TM window will appear ({ss.time_till_tm}); this
value varies from wavelength to wavelength, since SYNCSCHED frames appear on each wavelength at different points
in time.

A software signal to >tm< begins the Time Measurement process. The node listens until it hears a SYNCSCHED
frame with the {ss.tm _bit} set, indicating that a TM frame is attached to the end of this superframe. It then sets
the tm_timer for the amount {ss.time_till_tm}, waits for the timer to expire, and then transmits a timestamped

IDLE

)

[ RCVSGNL("SEND_TM", >tm<) ]
SND( {tm}. rcv lambda )

Figure 14: Transmit hardware state machine for time measurement: <tm>
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[ RCV( {ss}) && my_node_ID !in {ss.schedule} && ! {ss.active_bit} ]
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A

[ RCV( {ss}) && my_node_ID in {ss.schedule} ] JOIN LISTEN
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A

[ RCV( {ss} ) && my_node_ID !in {ss.schedule} && {ss.active_bit} ]
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psc_sf_start =r_ss — T_ss(BANKO) - psc_offset + sf_length(BANKO)
master_node_ID = {ss.master_node_ID}; SNDSGNL("JOIN_OCC_START_TIME",<join>)

[RCV({arp})] i j

arp += {arp.table}

A
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MEM(BANKO) = {ss.schedule(my_node_ID)}; STATUS(BANKO, VALID)
num_schedchunks(BANKO) = {ss.num_schedchunks(my_node_ID)}
sf_length(BANKO) = {ss.sf_length} ; r_ss = cur_time ; T_ss(BANKO) = {ss.T_ss}
psc_sf_start_next = r_ss — T_ss(BANKO) — psc_offset + sf_length(BANKO)
master_node_ID = {ss.master_node_ID}; SNDSGNL("NEW_SCHED", sw)

A

[ RCV({ss}) && ! {ss.more_frames} && my_node_ID not in {ss.schedule} && old_sched count ]
get_sched_timer = T_GET_SCHED ; old_sched_count——

Figure 15: Receive hardware state machine for join: >join<

TM frame on its receive wavelength. When the node hears its own transmission of the TM frame, it copies the
frame’s timestamp and the current time into the variables tm_out and tm_in, respectively, and signals the signa—-
ling_controller, which divides the difference of these two values by two to yield the psc_offset.

2.5.6 Join
For a new node, the Join process can be broken into two parts: letting the master node know of its presence, and

waiting for the master node to include it in the schedule.

2.5.6.1 Contacting the master node The new node must learn when the JOINOCC window will occur, so that it
can transmit a JOINOCC frame to the master node. It listens on its receive wavelength until it receives a SYNCSCHED
frame with the ss.active_bit set. (This measure ensures that the schedule included in the SYNCSCHED frame is the
one currently in effect.) From SYNCSCHED, it extracts the following data fields and stores them in its corresponding
local variables:

{ss.cur_sched_lambda} :the master node’s listening wavelength. (gets copied into cur_sched_lambda )
{ss.sf_length} : the length in slots of the superframe. (gets copied into sf_length (BANKO) )

{ss.T_ss} : the offset time (relative to the start of the superframe) of the SYNCSCHED frame on the node’s receive
wavelength. (gets copied into T_ss (BANKO) )
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[ cur_time >= xmit_join_occ ]
SND( {joinocc}, cur_sched_lambda )

SNDSGNL("START_OLD_SCHED_COUNT", >join<) ] (
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WAIT ON
J >L JOIN WINDOW
[ RCVSGNL("JOIN_OCC_START_TIME", >join<) ]
xmit_join_occ = psc_sf_start + T_jo — psc_offset

Figure 16: Transmit hardware state machine for join: <join>

{ss.T_jo} : the offset time (relative to the start of the superframe) of the JOINOCC window on the master node’s
receive wavelength. (gets copied into T_jo )

Additionally, the node stores the time from its local clock that the SYNCSCHED frame arrived (the "receive times-
tamp") in the local variable r_ss. From these 5 values, the node can calculate the time (from its local clock) that the
start of the superframe occurred at the PSC:

psc_sf_start =r_ss — T_ss(BANKO) — psc_offset + sf_length(BANKO)

The node can now calculate the time (from its local clock) that it must transmit a JOIN-OCC frame in order to hit
the JOINOCC window:

xmit_join_occ =psc_sf_start+T_jo—psc_offset

The node must include a checksum in the JOINOCC frame so that the master node can determine whether it has
received the correct information, since it is possible for a collision to occur when two or more nodes attempt to send a
JOINOCC frame at the same time.

2.5.6.2 Waiting to be included Since the new node’s receive wavelength is not necessarily the same as the master
node’s receive wavelength, the new node will be unable to directly detect a collision in the JOINOCC window. Once
the JOINOCC frame has been sent, the only way for the new node to learn that it has successfully been included
in the network is to receive a new schedule (via the SYNCSCHED frame) which includes its own MAC address
(my_node_ID). This new schedule will indicate the windows in which the new node may transmit on each wavelength.

To handle the case of a collision, the new node sets a counter (o1d_sched_count) to the value OLD_SCHED_MAX
after it transmits a JOINOCC frame. While waiting to hear a new schedule containing its own MAC address, the
node decrements old_sched_count each time it hears a SYNCSCHED that lacks its MAC address. If the counter
should reach zero, the new node notifies the signaling_controller and exits the Join process. The signa-
ling controller may either retry the Join process or, after repeated failures, simply give up (i.e. enter ERR
mode).

If, on the other hand, the new node hears a new schedule containing its own MAC address, then it copies the nec-
essary timing information from the SYNCSCHED frame into the corresponding local variable locations, and signals
the signaling controller that it has successfully joined the network (via the "NEW_SCHED" signal).

2.5.6.3 Backoff Algorithms If a new node exits the TM receive hardware state machine >tm< with the signal
"NO_REPLY" to signaling controller, signaling controller may execute an exponential backoff
algorithm. (A total of TM_MAX failures of this kind are allowed before giving up on Time Measurement and moving to
ERR Mode.) The tm_backoff_timer is assigned the value RAND(1..T_TMBACKOFF x 2™ _MAX—tn_count) "Fach time the
node picks a random uniformly-distributed number whose bounds are growing larger.

If a new node exits >tm< with the signal "NO_TM_WINDOW" to signaling_controller, then signa-
ling_controller decrements the counter get_tm_count and immediately restarts Time Measurement, without
backing off. A total of GET_TM_MAX failures of this kind are allowed before moving to the ERR Mode. (A backoff
algorithm could be added to the handling of this type of failure.)

If a joining node exits >join< with the signal "NO_NEW_SCHED" to signaling_controller, then
signaling_controller may execute an exponential backoff algorithm. (A total of JOIN_MAX failures of this

kind are allowed before moving to ERR Mode.) The join_backoff_timer is assigned the value of RAND(T_BACKOFF x
2JOIN_MAX7j oin_ count ) .
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Figure 17: Receive hardware state machine for candidate and slave nodes: >routine<

2.5.7 Routine

We now describe the operation of the receive and transmit hardware of a nonscheduling node, i.e. candidate and
slave nodes. A new node enters Routine Mode once it has successfully joined the network; that is, during >join<
it received a SYNCSCHED frame that included its own MAC address in the schedule, and it then exited >join<
with the message "NEW_SCHED" to signaling_ controller. The main functions of the receive hardware
>routinec< are to forward incoming data frames to the signaling controller and to extract the schedule
from the SYNCSCHED frame. The transmit hardware <routine> meanwhile transmits control frames and data
frames from its wavelength queues onto the appropriate outgoing wavelengths, according to the current schedule.

2.5.7.1 Receive Hardware We first describe >routine< qualitatively, and then explicitly describe the transitions
possible at each state. The state machine diagram for>routine< is shown in Figure 17. When a SYNCSCHED
frame is received, >routine< first checks whether its own MAC address (my_node_1ID) is included in the schedule.
If the node has for some reason been left out of the schedule, >routine< notifies the signaling controller
with the "NOT_IN_SCHED" signal and returns to idle. The signaling_ controller then exits Routine Mode
and moves to ERR mode.
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If, on the other hand, the node’s my_node_ID is in the schedule, then >routine< copies synchronization infor-
mation from SYNCSCHED and next checks whether the {ss.active_bit} is set. As long as the active bit is set, the
node will continue to operate according to the current schedule (located in cur_bank). However, if the active bit is not
set, then the schedule being disseminated in the SYNCSCHED frame is a newly calculated schedule that will go into
effect after {ss.switch_count} more superframes. That is, switch_count (the local variable into which the value
{ss.switch_count} is copied) represents the number of remaining superframes following the current one in which
the old schedule will still be used.

When >rout ine< encounters a SYNCSCHED frame without the {ss.active_bit} set, it checks the status of
the reserve memory bank (i.e., ! cur_bank). If the status is INVALID, then all the new synchronization and scheduling
information for the new schedule has yet to be copied into the reserve memory bank (i.e., into !cur_bank). After
copying this information, >routine< sets this bank’s status to VALID. In this way, >routine< doesn’t waste
effort recopying the new schedule’s information into !cur_bank a total of {ss.switch_count} times. That is, if
>routine< encounters a SYNCSCHED frame without the {ss.active_bit} set but finds the status of !cur_bank
to be already VALID, then it recognizes that it has already copied the new information into !cur_bank.

There are three states in >routine<: Idle, Routine Listen, and In Schedule. We now describe each state in turn.

1. Idle State. The only transition out of the Idle state is:

e START_ROUTINE signal from signaling_controller.

Event: The node has successfully joined the network.
Transition: Move to Routine Listen state.

2. Routine Listen. There are 6 transitions out of the Routine Listen state; the first two are self-transitions.

e Receipt of a DATA frame.
Event: A DATA frame was received on the listening wavelength.
Transition: Forward the frame to the frame handling layer and return to the Routine Listen state.
e Receipt of an ARP frame.
Event: An ARP frame was received on the listening wavelength.
Transition: Copy the new information into the ARP table and return to the Routine Listen state.
o STOP_ROUTINE signal from <routine>.
Event: <routine> has encountered an error condition and is returning to idle.
Transition: Move to Idle state.
e get_sched_timer expired.
Event: Failed to receive a SYNCSCHED within T_GET_SCHED.
Transition: Move to Idle state.
e Receipt of a SYNCSCHED which contains my_node_1ID.
Event: A SYNCSCHED frame was received that contains scheduling information for this node.
Transition: Save important timing information and move to the In Schedule state.
e Receipt of a SYNCSCHED which does not contain my_node_1ID.

Event: A SYNCSCHED frame was received that unexpectedly fails to contain scheduling information for
this node.

Transition: Mark the status of both memory banks (the current and the reserve bank) INVALID, send
signal NOT_IN_SCHED to signaling_controller, and move to the Idle state.

3. Routine Listen. >routine< can only arrive at this state after the receipt of a SYNCSCHED which contains
my_node_ID. There are 5 transitions out of the In Schedule state; the first is a self-transition, the second is
triggered by a signal, and the final three involve checking another field in the newly-arrived SYNCSCHED
frame.
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e Receipt of an ARP frame.

Event: An ARP frame was received on the listening wavelength.

Transition: Copy the new information into the ARP table and return to the In Schedule state.
e STOP_ROUTINE signal from <routine>.

Event: <routine> has encountered an error condition and is returning to idle.

Transition: Move to Idle state.
e {ss.active_bit} was set.

Event: The active bit in the newly-arrived SYNCSCHED frame was set, indicating that no countdown
has begun to switch to a new schedule.

Transition: Reset get_sched_timer and move to Routine Listen state.
e {ss.active_bit} was not set and the status of ! cur_bank is VALID.

Event: Countdown has begun to switch to a new schedule, and the new schedule has already been copied
into the reserve memory bank (!cur_bank).

Transition: Reset get_sched_timer and move to the Routine Listen state.
e {ss.active_bit} was not set and the status of ! cur_bank is INVALID.

Event: Countdown has begun to switch to a new schedule, but the new schedule has not yet been copied
into the reserve memory bank (! cur_pank).

Transition: Copy the new scheduling information into !cur_bank, save important timing information,
and move to the In Schedule state.

2.5.7.2 Transmit Hardware The state machine <routine> shown in Figure 18 can only begin after the Join
process has succeeded. The final task in the Join process was to place the current schedule and relevant synchroniza-
tion information into the memory bank BANKO; therefore <routine> begins by setting cur_bank to BANKO. After
confirming BANKO’s status to be VALID, <routine> is ready to begin the first superframe.

At the start of any superframe, <routine> :

1.

sets cur_schedule to point to the schedule contained in cur_bank. (Note that the status of cur_bank has
already been confirmed VALID.)

sets the index cur_schedchunk to zero. This index will be incremented after the node completes its transmis-
sions on each successive wavelength; the node then can recognize that it is done with the current superframe
when cur_schedchunk reaches the value num_schedchunks(cur_bank) — 1.

sets psc_sf_start to psc_sf_start_next. Recall that psc_sf_start represents the time (according the
node’s local clock) that the superframe began at the PSC. The value of psc_sf_start_next could have been
set in one of two ways: either >join< set the value (true only for the first superframe after the node joins the
network), or >rout ine< set the value (true for all other superframes).

Once these tasks have been completed, <routine> is ready to begin transmissions according to the information
contained in the current schedchunk.
At the start of any schedchunk, <routine> :

1.
2.
3.

sets xmit_lambda to the wavelength in cur_schedchunk.
sets cur_queue to point to the queue for xmit_lambda.

calculates two time references that govern its transmissions: (a) xmit_start, the time it may begin transmitting
on xmit_lambda, and (b) xmit_last, the last instant at which it may start the transmission of a frame on
xmit_lambda.

At this point <routine> needs only to wait until xmit_start arrives in order to begin transmitting; the first frame
it transmits depends on the value of xmit_lambda:

25



[ RCVSGNL("START_ROUTINE", sw ] [ STATUS(cur_bank) == INVALID |

/ SNDSGNL("UNEXP_INVALID_BANK", sw)
[ STATUS(BANKO) == INVALID | -

SNDSGNL("STOP_ROUTINE", >routine< ) [STATU
S S(1
NDSGNL (..A(;g\eank )

>( IDLE

SNDSGNL("BANKS_INVALID", sw)

== INV
AL, AL
- = D\SCHED"D]
5 § s Sw)
-
I
<>( § SWITCH
] SCHEDULE
—~Oo w
g<=
z g (st
o 3 gTATY
D <3 o
2t our— [ ! switch_count ]
< QO ®
= o
“ 33 \/ [ switch_count > 0]
VALID g switch_count-—— COUNTDOWN
BANK
k3]
§ % gs & C/VTDW [ status_flags & CNTDWN == CNTDWN ]
5 ¢ Neso)
3 o o
[ o |
=] Q.
o 1o
S £
o = 0
3 o VALID
2 =
5 Ss SCHEDULE
@, D =
P i
3 283
I Ec©
© o &
Q== 0 9
2359
35535
S £3+° [ STATUS(cur_bank) == VALID &&
.‘:’i ‘<7>| % 8 g cur_time >= psc_sf_start + sf_length - psc_offset ]
© 77)' w| :f‘ G\
S ? n 3 8‘ [ cur_schedchunk < num_schedchunks(cur_bank) ]
St ‘IT‘ Q cur_queue = cur_schedule(cur_schedchunk).queue OF
BHeCc 4 xmit_lambda = cur_schedule(cur_schedchunk).lambda SCHEDULE
é 77,' r_ul ‘a‘ <_vs‘ xmit_start = psc_sf_start + cur_schedule(cur_schedchunk).T_start — psc_offset
o EEE xmit_last = psc_sf_start + cur_schedule(cur_schedchunk).T_last_slot — psc_offset A
8 8 xX X XV
END OF W
OR SCHEDCHUNK | [ cur_schedchunk == num_schedchunks(cur_bank) ]
T
8
»
I
-‘g [ cur_time <= xmit_last && EMPTY (cur_queue) ]
u %
5
'—j TRANSMIT
3
o .
o | [ xmit_lambda == rcv_lambda ] [ xmit_lambda == cur_sched_lambda ]

[ cur_time <= xmit_last && | EMPTY(cur_queue) ]
SND( HOL(cur_queue), xmit_lambda )

SND( {tm}, rev_lambda ) SND( {occ}, cur_sched_lambda )
TRANSMIT | TRANSMIT
t_lambda != rcv_lambd
v  |[xmit Jambda l= rov_lambda ] 0CC [ xmit_lambda != cur_sched_lambda ]

Figure 18: Transmit hardware state machine for candidate and slave nodes: <routine>
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1. If xmit_lambda = cur_sched_lambda (the receive wavelength of the master node), then the first frame
<routine> transmits must be an {OCC} frame, to inform the master node of its queue occupancies.

2. Otherwise, if xmit_lambda = rcv_lambda (the node’s own receive wavelength), then the first frame <routine>
transmits must be a {TM} frame, to carry out "Routine Time Measurement".

3. Otherwise, <routine> may transmit DATA frames from cur_queue.

Recall that DATA frames may be of variable length, with none exceeding L_max. The node transmits DATA frames
from cur_queue back to back, without waiting for the beginning of a new slot. Just prior to transmitting each frame,
the node checks to make sure that the current time has not exceeded xmit_last. When xmit_last has passed, trans-
missions on this wavelength must cease; the end of the current schedchunk has arrived. The index cur_schedchunk
is incremented and then tested against num_schedchunks(cur_bank) to determine whether the end of the schedule
has arrived. If not, <routine> proceeds to the next schedchunk.

But if <routine> has reached the end of the schedule, it next checks whether a countdown has started (counting
down the superframes until the time to switch from the current to the reserve memory bank). If the countdown has not
yet begun, then <routine> simply starts over at the beginning of the current schedule in cur_bank. If the countdown
has begun, then <routine> must determine whether it should switch now to the reserve memory bank. This task is
accomplished by considering the value of switch_count, which gives the number of remaining superframes for which
the old schedule should still be used. If switch_count is positive, <routine> decrements switch_count and starts
over at the beginning of the old schedule (in cur_bank). If switch_count has reached zero, then <rout ine> marks
cur_bank INVALID and switches to the reserve memory bank, by setting cur_bank to !cur_bank.

2.5.8 Scheduling

2.5.8.1 Receive Hardware The receive state machine >scheduling<, shown in Figure 19, retains all the func-
tionality of >routine<, but possesses two extra transitions to aid in the collection of information needed to compute
the schedule. Each of the additional transitions is a self-transition from the Routine Listen state:

e Receipt of an OCC frame.

Event: An OCC frame was received on the listening wavelength.

Transition: Forward the frame to the signaling_controller and return to the Routine Listen state.
e Receipt of a JOINOCC frame.

Event: An JOINOCC frame was received on the listening wavelength.

Transition: Forward the frame to the signaling_controller and return to the Routine Listen state.

2.5.8.2 Transmit Hardware The transmit state machine <scheduling>, shown in Figure 20, retains all the
functionality of <routine>. However, the transition from the End of Schedchunk state to the End of Sched-
ule state becomes split into two, in order to aid in the transmission of a newly-calculated schedule. Both transi-
tions first check to make sure the end of schedule has been reached, by verifying that cur_schedchunk+1 equals
num_schedchunks (cur_bank). Next, the status of BANK_NEWCALC is checked. If INVALID, no action is taken. If
VALID, then a newly-calculated schedule has been placed in BANK_NEWCALC by the software; <scheduling> copies
the new schedule into BANK_CURFRAME so that it can be disseminated in the next superframe.

2.5.8.3 Routine Time Measurement All nodes, whether master, candidate, or slave, will make repeat measure-
ments of their psc_offset once per superframe. Upon the arrival of the regularly-scheduled transmission window on
its own receive wavelength, the node will first transmit a TM frame. The receive hardware, >routine<, will hear
this transmission and will compute an updated value of psc_offset: (cur_time - {tm.timestamp} ) /2.

2.5.9 Error Detection, Reporting, and Recovery (ERR) Mode

2.5.9.1 Events that trigger the transition to ERR mode A node enters ERR mode from another state in the
software state machine. Several events can cause the transition into ERR mode.
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23 15 [ RCV({ss} ) && my_node_ID in {ss.schedule} && ! {ss.active_bit}
-f o é 9] && ! {ss.more_frames} && STATUS( ! cur_bank) == INVALID ]
=< =< _ ime - -
= == r_ss = cur_time ; master_node_ID = {ss.master_node_ID}
% g o psc_sf_start_next =r_ss — T_ss - psc_offset + sf_length(cur_bank)
5= 28 get_sched_timer = T_GET_SCHED

[RCV({ss}) &&! {ss:more_frames) && ! seen_self %-— 2= MEM( ! cur_bank) = {ss.schedule(my_node_ID)}

&& my_node_ID not in {ss.schedule} ] - = STATUS( ! cur_bank, VALID) ; status_flags |= CNTDWN

STATUS(cur_bank, INVALID) ; STATUS(!cur_bank, INVALID)

switch_count = {ss.switch_count} ; T_ss( ! cur_bank) = {ss.T_ss}
SNDSGNL("NOT_IN_SCHED", sw)

num_schedchunks( ! cur_bank) = {ss.num_schedchunks(my_node_ID)}

9
QQ

* sf_length( ! cur_bank) = {ss.sf_length}
[ RCVSGNL("START_SCHEDULING", sw) ]
get_sched_timer = T_GET_SCHED [RCV({occ})]
- update(traffic matrix)
ROUTINE
IDLE | [ RCVSGNL("STOP_SCHEDULING", <scheduling>) ] [ RCV( {joinocce} ) ]
LISTEN update(traffic matrix) ; SNDSGNL("RECALC_SCHEDULE", sw)
[ ! get_sched_timer ] [ RCV( {tm} ) && {tm.CRC} && {tm.source_ID} == my_node_ID]
SNDSGNL("NO_SCHED", sw) tm_out = {t